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Abstract

Bayesian inference and decision theory may be used in the solution of relatively complex

problems of natural resource management, owing to recent advances in statistical theory

and computing. In particular, Markov chain Monte Carlo algorithms provide a computa-

tional framework for fitting models of adequate complexity and for evaluating the expected

consequences of alternative management actions. We illustrate these features using a hypo-

thetical example based on management of waterfowl habitat.
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1 Introduction

Formal methods of decision making in natural resource management combine models of

the dynamics of an ecological system with an objective function, which values the outcomes

of alternative management actions. A common decision-making problem involves a temporal

sequence of decisions, each alike in kind, but where the optimal action at each decision point

may depend on time and/or system state (Possingham 1997). The goal of the manager,

then, is to develop a decision rule (or management strategy) that prescribes management

actions for each time or system state that are optimal with respect to the objective function.

Examples of this kind of decision problem include direct manipulation of plant or animal

populations through harvesting, stocking, or transplanting, as well as indirect population

management through chemical or physical manipulation of relevant habitat attributes. Of-

ten, these problems also have a spatial aspect, wherein management decisions are required

at different locations.

A rigorous analysis of such decision problems requires specification of (1) an objective

function for evaluating alternative management strategies; (2) predictive models of system

dynamics formulated in terms of quantities relevant to management objectives; (3) a finite

set of alternative management actions, including any constraints on their use; and (4) a

monitoring program to follow the system’s evolution and responses to management. The

objective function specifies the value of alternative management actions and usually accounts

for both benefits and costs, as well as conditional constraints. The predictive models must

be realistic enough to mimic the relevant behaviors of ecological systems, which often are

complex (i.e., include many interacting components), are characterized by spatial, temporal,

and organizational heterogeneity, and involve nonlinear dynamics. Thus, specification of an

objective function and of useful system models can often be a demanding and difficult task

in practical applications of decision theory to problems of natural resource management.

Perhaps even greater challenges are induced, however, by uncertainty in the predictions of

1



management outcomes. This uncertainty may stem from incomplete control of management

actions, errors in measurement and sampling of ecological systems, environmental variability,

or incomplete knowledge of system behavior (Williams et al. 1996). A failure to recognize

and account for these sources of uncertainty can severely depress management performance

and, in some cases, has led to catastrophic environmental and economic losses (Ludwig et al.

1993). Accordingly, there has been a growing interest in the theory of stochastic decision

processes, and in practical methods for deriving optimal (or at least robust) solutions (Wal-

ters and Hilborn 1978, Hilborn 1987, Williams 1989). Recently, there has been a particular

emphasis on methods that can account for uncertainty in the dynamics of ecological systems

and in their responses to both controlled and uncontrolled factors (Walters 1986). This

uncertainty can be characterized by continuous or discrete distributions of model param-

eters (or by discrete distributions of alternative model forms), which are hypothesized or

estimated from historical data (e.g., see Walters 1975, Johnson et al. 1997). In this man-

ner, model uncertainty can be accommodated in solutions of decision problems in exactly

the same manner as environmental variation and incomplete management control (Walters

1975). An important conceptual advance, however, has been the recognition that these prob-

ability distributions are not static, but rather evolve over time as new observations of system

behaviors are accumulated during the management process (Walters 1986). The currently

popular notion of adaptive resource management involves efforts that attempt to account

for these dynamics of uncertainty in making management decisions (Walters 1986, Walters

and Holling 1990, Williams 1996).

In this paper we argue that Bayesian inference and decision theory provide a coherent,

theoretical framework for decision making in problems of natural resource management.

Bayesian inference includes a probabilistic approach for sequentially updating beliefs (spec-

ified in terms of model parameters) as new information is acquired through monitoring and

for predicting the consequences of future management actions, while properly accounting

for uncertainty in the updated beliefs. In Bayesian decision theory, management objec-

2



tives are specified as a function of model predictions (and/or parameters), and the expected

consequences of any particular management action are calculated by integrating over the

uncertainty in both model parameters and predictions.

The potential applicability of Bayesian methods in problems of natural resource man-

agement or conservation has been recognized previously (Ellison 1996, Bergerud and Reed

1998, Wade 2000); however, only recently have advances in statistical theory and computing

allowed fairly complex, and hopefully more realistic, models to be fitted and used in deci-

sion making. Markov chain Monte Carlo algorithms (Gelfand and Smith 1990, Smith and

Roberts 1993, Gilks et al. 1996), for example, are currently used in Bayesian analyses to fit

complex models that were considered intractable only a decade ago.

In this paper we illustrate the Bayesian approach to inference and decision-making using a

hypothetical example based on management of waterfowl habitat. This example is motivated

by an actual problem and, although greatly simplified, includes several features that are

common in problems of natural resource management. Our objective is to illustrate the

general utility of the Bayesian approach in these problems, taking advantage of modern

technological advances in Bayesian computation.

2 Inference and Decision-Making in a Problem of Habi-

tat Management

2.1 Background and Setting

Suppose a moderately large property (say, on the order of a few thousand acres) is man-

aged to provide habitat for waterfowl that may only be present during a brief overwintering

period. (Migratory ducks that originate and live primarily in northeastern North America

but migrate to Florida for the winter are good examples.) The wildlife managers respon-

sible for this property believe that a combination of emergent vegetation interspersed with
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about 50% open water provides nearly ideal habitat for these waterfowl. Managers can reg-

ulate water levels on the property with reasonably good precision (owing to the presence

of impoundments); however, there is considerable uncertainty about how to control growth

of vegetation to provide suitable habitat. Various types of physical manipulation, such as

burning, cutting, or grazing of vegetation, represent possible management actions for con-

trolling growth; however, the effects of these manipulations are not well understood and are

difficult to predict. Nonetheless, wildlife managers must develop a strategy that combines

water-level regulation with one or more types of physical manipulation of the vegetation to

achieve their objective of 50% open water and 50% vegetation cover.

Assume that the property to be managed is subdivided into n non-overlapping plots

of approximately equal size and shape that can be manipulated in various ways to alter

vegetation cover. Let x denote a q × 1 design vector that specifies which of the q possible

management actions (i.e., manipulations) is applied to an individual plot. Without loss

of generality, we define x using a “centered” parameterization wherein x = (1, 0, . . . , 0)T

specifies the first management action, x = (0, 1, . . . , 0)T specifies the second management

action, and so on. The exponent, T , indicates the transpose of a matrix or vector.

In the first year of management suppose we have a procedure (e.g., randomization) for

deciding which of the q possible management actions is applied to each of the n plots. In

other words, we have a way of assigning a value to xi1, the design vector for the ith plot

(i = 1, . . . , n) at time t = 1. For the moment, we assume that each management action can be

applied without error (i.e., uncertainty due to partial controllability of management actions

is negligible). Our initial management actions may be summarized in a n × q matrix X1 =

(x11,x21, . . . ,xn1)T . Suppose we have implemented these actions and observed the vegetation

cover in each plot. Denoting these n responses in vegetation cover with an n × 1 vector y1

(subscript indicates t = 1), we summarize the results of the first year of management actions

as follows:
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Plot ManagementAction VegetationCover

1 x11 = (1, 0)T ⇒ burning y11

2 x21 = (1, 0)T ⇒ burning y21

3 x31 = (0, 1)T ⇒ cutting y31

...
...

...

n xn1 = (0, 1)T ⇒ cutting yn1

(Only q = 2 management actions are illustrated for ease of presentation.)

Given these results, we now require a procedure for selecting a new set of management

actions to be implemented in the second year. Our selection should depend on the plot-

specific responses of vegetation to management actions applied in the previous year and

on the need to satisfy the overall management objective of 50% vegetation cover. In other

words, we need a procedure that specifies X2, the design at t = 2, given our management

objective and our current beliefs.

2.2 Modeling Consequences of Management Actions

Statistical models provide an essential framework for specifying our beliefs and for making

evidentiary conclusions or predictions based on those beliefs and on the available data. In

our habitat-management problem, a statistical model is needed to provide a quantitative,

unambiguous description of the processes thought to be responsible for producing plot-

specific differences in vegetation cover. The model allows us to infer which processes are

most important in terms of well-defined criteria (i.e., model parameters) and to predict the

consequences of future management actions given our current level of understanding and

current estimates of uncertainty.

We consider the following, relatively simple model of plot-specific vegetation responses

over a period of τ years. Assume the vegetation cover in an individual plot depends on both
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the current type of management and on past levels of vegetation observed in that plot. We

can specify these dependencies using a first-order, autoregressive model:



Yi1

Yi2

Yi3

...

Yiτ




∼ N







xT
i1β

xT
i2β

xT
i3β

...

xT
iτβ




,
σ2

(1 − ρ2)




1 ρ ρ2 · · · ρτ−1

ρ 1 ρ

ρ2 ρ 1
... . . .

ρτ−1 1







(1)

where Yit is a random variable for vegetation cover in plot i in year t, xit specifies the

management action applied to plot i in year t, and β, σ2, and ρ are model parameters. Given

the “centered” parameterization implied in our definition of x, each element of β corresponds

to the mean vegetation cover associated with a distinct management action. The parameter

ρ denotes the correlation between vegetation responses observed in consecutive years.

For our purposes, it is useful to express the plot-specific temporal dependence in vegeta-

tion cover in the following form, which is equivalent to (1):

(Yit | xit,β, σ2, ρ, yi,t−1, xi,t−1) ∼




N(xT
itβ, σ2/(1 − ρ2)) if t = 1,

N
(
xT

itβ + ρ (yi,t−1 − xT
i,t−1β), σ2

)
if t > 1.

(2)

Thus, by conditioning on the sequence of past observations (yi1, . . . , yi,t−1), we express the

conditional mean of the ith plot’s vegetation cover in year t (> 1) in terms of present and

past management actions (xit and xi,t−1, respectively). This form of conditioning induces a

temporal dynamic that has important implications for the adaptive selection of plot-specific

management actions and will be discussed more fully in Section 2.4.

So far we have considered only how vegetation cover might respond to changes in manage-

ment actions within a single plot. All plots on the property are monitored and manipulated

in an adaptive approach to management; therefore, we require a model of the vegetation

responses in all plots. The simplest assumption to consider is that plot-specific responses

6



are conditionally independent; thus, their joint density is

f(yt | X t,θ, yt−1,X t−1) =
n∏

i=1

f(yit | xit,θ, yi,t−1,xi,t−1), (3)

where f(yit | xit,θ, yi,t−1,xi,t−1) specifies the conditional distribution (in (2)) of vegetation

cover in the ith plot and θ = (β, ρ, σ2)T is a vector of model parameters. The right-hand-side

of (3) would be more complicated if we had assumed that vegetation cover depended, in part,

on the proximity of one plot to another. For now, however, we ignore spatial dependence in

vegetation cover (but see Section 3).

2.3 Bayesian Updating of Model Parameters

Armed with a model of the responses in vegetation to different types of physical manip-

ulation, we now describe how Bayesian inference may be used to update our beliefs about

model parameters as new management actions are implemented over time. At the end of

the first year, we have implemented a set of management actions (X1) and observed the

responses of vegetation cover to those management actions (y1). Applying Bayes Theorem

yields the posterior distribution of model parameters,

p(β, σ2, ρ | y1,X1) =
f(y1 | X1,β, σ2, ρ) π(β, σ2, ρ)∫

f(y1 | X1,θ) π(θ) dθ
, (4)

which indicates how our initial opinion of the model parameters (specified in the prior distri-

bution π(β, σ2, ρ)) is modified in light of the observed responses of vegetation to management.

The contribution of these data to the posterior is called the likelihood function, which we

denote by f . Since one year of data provides no information about the temporal dependence

of vegetation cover within each plot, information about ρ in the posterior for t = 1 will be

identical to that specified in the prior π(β, σ2, ρ). Our opinions about β and σ2, on the other

hand, are likely to be influenced by the first year’s results.

Now imagine that we have selected and implemented a set of management actions in

the second year (X2) and observed the responses in vegetation cover (y2). Again, applying
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Bayes Theorem yields the posterior distribution of model parameters

p(β, σ2, ρ | y1,y2,X1,X2) =
f(y2 | X2,β, σ2, ρ, y1,X1) p(β, σ2, ρ | y1,X1)∫

f(y2 | X2,θ, y1,X1) p(θ | y1,X1) dθ
, (5)

which reveals how our opinion of the model parameters at the end of the first year is modified

by the results observed in the second year. In particular, ρ may now be updated based on

the second year of responses in vegetation cover.

Using successive applications of Bayes Theorem, it is easy to show that the posterior

distribution of model parameters at the end of the tth year is

p(θ | y1, . . . ,yt,X1, . . . ,X t) =

f(yt | X t,θ, yt−1,X t−1) p(θ | y1, . . . ,yt−1,X1, . . . ,X t−1)∫
f(yt | X t,ψ, yt−1,X t−1) p(ψ | y1, . . . ,yt−1,X1, . . . ,X t−1) dψ

, (6)

where ψ represents all possible values of the model parameters. Thus, Bayes Theorem pro-

vides a general method for sequentially updating our beliefs and quantifying our uncertainty

about model parameters as new results are acquired. In Section 2.4 we describe how Bayesian

updating is used to evaluate the consequences of future management actions and thereby

help to achieve the overall management objective of 50% vegetation cover.

2.4 Computing an Optimal Set of Management Actions

Our overall management objective (50% vegetation cover) is defined in terms of quantities

that are directly observable, unlike the unobservable model parameters. To evaluate the con-

sequences of future management actions, we therefore require predictions of the (observable)

vegetation cover in each plot, given what we have learned from past observations.

Let ỹt denote an n × 1 vector of plot-specific predictions of vegetation cover in year t.

The posterior predictive distribution of ỹt

p(ỹt | X̃ t, y1, . . . ,yt−1,X1, . . . ,X t−1) = (7)∫
f(ỹt | X̃ t,θ, yt−1,X t−1) p(θ | y1, . . . ,yt−1,X1, . . . ,X t−1) dθ
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specifies our uncertainty in predictions of vegetation cover in year t, given a proposed set

of management actions (X̃ t) and the sequence of vegetation covers (y1, . . . ,yt−1) observed

after implementation of management actions (X1, . . . ,X t−1) in years 1 through t − 1. The

posterior predictive distribution properly accounts for all sources of uncertainty because it

integrates the conditional likelihood of plot-specific predictions of vegetation cover over the

posterior uncertainty of all model parameters.

We now describe how (7) is used to select future management actions that maximize our

opportunity to achieve the overall management objective of 50% vegetation cover. We denote

these management actions as “optimal.” Assume that a set of plot-specific management

actions X1 has been implemented and that the vegetation responses to those actions y1

have been observed. We require a procedure for selecting an optimal set of management

actions to be implemented in year 2. Let l(ỹ2, c) denote a function that specifies the scalar-

valued loss incurred when our predictions of vegetation cover differ from the target value

(c = 50%). For example, l(ỹ2, c) =
∑n

i=1 |ỹi2 − c| is an absolute-error loss function, which

equals the sum of the absolute discrepancies between plot-specific predictions of vegetation

cover and the target value.

The loss function l(ỹ2, c) allows us to develop an unambiguous, mathematical description

of our overall management objective. Specifically, we seek a (future) management action X̃2

that minimizes the loss that can be expected given the posterior uncertainty in plot-specific

predictions of vegetation cover. We denote this expected loss by

l(X̃2 | y1,X1) = E
(ỹ2|X̃2,y1,X1)

[l(ỹ2, c)] (8)

=
∫

l(ỹ2, c) p(ỹ2 | X̃2,y1,X1) dỹ2,

which reveals the crucial role of the posterior predictive distribution p(ỹ2 | X̃2,y1,X1) in

this problem. Our overall management objective may now be stated succinctly: Find an

optimal set of future management actions X̃
∗
2 such that

X̃
∗
2 = arg min

X̃2

[
l(X̃2 | y1,X1)

]
. (9)
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The computations involved in solving (9) may be formidable; however, in principle a

solution can always be found, assuming that one exists (see Section 2.5.1 for an example

where no optimum exists). We have assumed that one of q management actions can be

implemented in each of the n plots; therefore, there are qn possible values of X̃2 to compare

in the search for an optimal set of management actions X̃
∗
2.

Although we cannot seriously expect our model assumptions to remain valid indefinitely

long, we can also compute an optimal sequence of future management actions. Suppose we

have observed X1 and y1 and want to predict an optimal sequence of future management

actions (X̃
∗
2, X̃

∗
3, . . . , X̃

∗
τ ) to be implemented in the next τ − 1 years. Let l(ỹ2, . . . , ỹτ , c)

denote a scalar-valued loss function that specifies the loss incurred when future predictions

of vegetation cover fail to meet the objective of c = 50%. As in (8), we define the expected

loss through year τ as follows:

l(X̃2, . . . , X̃τ | y1,X1) = E
(ỹ2,...,ỹτ |X̃2,...,X̃τ ,y1,X1)

[l(ỹ2, . . . , ỹτ , c)] (10)

=
∫

l(ỹ2, . . . , ỹτ , c) p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) dỹ

where ỹ = (ỹ2, . . . , ỹτ )T . The solution to our problem is the sequence of future management

actions (X̃2, . . . , X̃τ ) that minimizes (10). Although numerical evaluations of (10) will be

computationally expensive, they are feasible. For example, our model implies that a random

draw from the posterior predictive distribution (ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) can be

obtained by computing random draws from an appropriately ordered sequence of conditional

posterior predictive distributions since

p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) = p(ỹ2 | X̃2,y1,X1) p(ỹ3 | ỹ2, X̃2, X̃3,y1,X1)

· · · p(ỹτ | ỹ2, . . . , ỹτ−1, X̃2, . . . , X̃τ ,y1,X1). (11)
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2.5 Numerical Examples

In this section 3 hypothetical data sets are used to clarify by example how data may

be used to inform management decisions. The data are analyzed using the autoregressive

model developed in Section 2.2, and decisions are made using the framework described in

Sections 2.3 and 2.4. Computational details about sampling from posterior and posterior-

predictive distributions are described in the appendix.

2.5.1 Equivocal responses in vegetation cover

In the first year of management suppose one of two types of management actions (denoted

by X1 = 1 and X1 = 2) are randomly assigned to each of 4 plots. After doing so, we observe

the vegetation cover (y1, as a proportion) in each plot as follows:

Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.85

4 1 0.45

The sample mean vegetation covers associated with management actions 1 and 2 (0.30 and

0.70, respectively) are equidistant from c = 0.50, the level of vegetation cover specified as

our management objective. What plot-specific management actions X̃2 should be taken in

year 2, given the vegetation responses observed year 1?

First we specify the management objective by assuming an absolute-error loss function,

l(ỹ2, 0.50) =
∑

i |ỹi2 − 0.50|, which quantifies the total discrepancy between predicted plot-

specific vegetation cover and c = 0.50. The optimal set of management actions includes

those which minimize the expected loss, averaging over the posterior uncertainty in plot-

specific predictions of vegetation cover (as in (8)). In this case there are 16 (= 24) possible

combinations of management actions to be compared (indicated in the columns below):

11



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2

1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2

To complete a Bayesian analysis of the data from year 1, we assume mutually inde-

pendent, Uniform(0,1) prior distributions for each component of β (the treatment-effect

parameters), a conjugate Inverse-Gamma(0.1,0.1) prior for σ2, and a fixed value for ρ (the

parameter for temporal dependence within plots). Assuming ρ to be fixed is equivalent to

specifying a prior for ρ with a point mass of 1.0 at the fixed value. It is necessary to specify

a strongly informative prior for ρ because data from only 1 year provide no information

about temporal dependence within plots. However, regardless of the value selected for ρ,

the posterior means for β1 and β2 are 0.36 and 0.64, respectively, which reflects a Bayesian

compromise (sometimes called “shrinkage”) between the prior means (0.50 and 0.50) and

the sample means (0.30 and 0.70).

Generally speaking, the optimal set of management actions proposed for year 2 depends

on the value assumed for ρ. If we assume ρ = 0 (i.e., plot-specific responses in years 1 and

2 are uncorrelated), the expected losses of all 16 experimental designs are approximately

equal (expected loss = 1.59, Monte Carlo standard error = 0.01). In other words, if no time

dependence in vegetation cover is assumed, then any set of management actions is as good

as any other, and the new set of management actions can be selected randomly and still be

optimal (i.e., still be consistent with the management objective). This decision seems quite

sensible because the posterior mean vegetation responses, being equidistant from c = 0.50,

do not favor any of the 16 possible sets of management actions.
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2.5.2 Favored responses in vegetation cover

This example is identical to the previous one except that we observe a different set of

vegetation responses at the end of the first year:

Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.65

4 1 0.25

Intuitively, one might guess that management action 2 is favored for selection in year 2

because the sample mean vegetation response to action 2 (0.60) is closer to the management

objective of c = 0.50 than the mean vegetation response to management action 1 (0.20).

This, in fact, turns out to be correct. If we assume that ρ = 0 (as in the previous example),

the expected losses of the 16 experimental designs are

1 2 3 4 5 6 7 8

1.55 1.49 1.49 1.46 1.50 1.51 1.47 1.45

9 10 11 12 13 14 15 16

1.46 1.41 1.46 1.46 1.41 1.41 1.41 1.36

All 4 plots receive management action 2 under the optimal design (#16) with the lowest

expected loss (1.36).

2.5.3 Equivocal and correlated responses in vegetation cover

The equivocal vegetation responses assumed in Section 2.5.1 failed to favor selection of

any of the 16 possible management actions when plot-specific responses in years 1 and 2

were assumed to be uncorrelated. Based on this analysis, suppose we decide to leave the

design unchanged in year 2 and observe an additional year of vegetation responses:
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Plot X1 y1 X2 y2

1 1 0.15 1 0.25

2 2 0.55 2 0.50

3 2 0.85 2 0.75

4 1 0.45 1 0.50

Notice that the sample mean vegetation covers associated with management actions 1 and

2 (0.3375 and 0.6625, respectively) are still equidistant from our management objective of

c = 0.50. However, now there is enough information in the data to estimate the interannual

dependence (or correlation) in plot-specific vegetation responses; therefore, we can examine

the influence of ρ in the selection of management actions proposed for year 3.

Suppose we assume a mutually independent, Uniform(0,1) prior for each component of

β, a conjugate Inverse-Gamma(0.1,0.1) prior for σ2, and a Uniform(-1,1) prior for ρ. A

Bayesian analysis of the observed data yields a posterior mean for β that approximately

equals the sample mean (0.35 and 0.65, respectively (Figure 1)). The posterior distribution

of ρ (Figure 1) is highly skewed (mean = 0.37, median = 0.43) and indicates that the

vegetation responses within each plot are positively correlated.

The expected losses used to compare different sets of management actions proposed for

year 3 depend, as usual, on the posterior predictions of vegetation responses to those actions.

However, given the positive interannual correlation in plot-specific responses that we have

estimated from years 1 and 2, we do not expect all designs to have the same expected

loss, even though the posterior mean vegetation responses to the 2 management actions are

equidistant from c = 0.50. In fact, the expected losses are quite different, as indicated in the

following table:

1 2 3 4 5 6 7 8

1.077 1.008 1.069 1.005 1.143 1.077 1.151 1.077

9 10 11 12 13 14 15 16

1.007 1.077 1.148 1.072 1.147 1.071 1.000 1.074
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Design #15 provides the optimal set of management actions because it has the lowest

expected loss (1.000). However, designs #2, #4, and #9 provide almost the same expected

loss given the Monte Carlo standard error (0.005) of the estimates. In design #15 only

the first plot receives a change in management compared to the previous 2 years. The

predicted mean vegetation cover of plot 1 under design #15 is 0.60, which is closer to the

management objective of c = 0.5 than the mean vegetation cover of 0.31, which is predicted

if the management actions in plot 1 are left unchanged (design #9). This example illustrates

that the temporal dependence in vegetation responses can exert considerable influence in the

selection of alternative management actions.

3 Discussion

Management of natural resources generally involves a repeating sequence of data collec-

tion (monitoring), assessment (analysis of data and prediction of consequences of proposed

management actions), and implementation (actions or manipulations intended to achieve

management objectives). This sequence essentially represents an iterative updating of be-

liefs that includes learning from data and making decisions in the presence of uncertainty,

activities which are inherent features of the Bayesian paradigm.

We have demonstrated that Bayesian inference and decision theory may be used in the

solution of relatively complex problems of natural resource management, owing to recent

advances in statistical computing. Our hypothetical problem of habitat management (Sec-

tion 2), though greatly simplified, includes several common features of actual problems of

natural resource management. For example, we assumed that changes in system state (plot-

specific vegetation) depend on proposed and past management actions and on the past state

of the system. State-dependent dynamics are often justified on scientific (problem-specific)

grounds; however, they are sensible also in cases where the proximate causes of state de-

pendence are poorly understood (and unobserved) but necessary for accurate predictions of
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future system state.

Actual problems of natural resource management often contain additional features that

add complexity to models of system dynamics or to the loss functions used in specifying

management objectives. Modern Bayesian methods of inference and decision-making are

capable of accommodating many, if not all, of these additional complexities. For example,

system dynamics frequently are influenced by factors that cannot be controlled by managers.

Uncertainties in system responses to management actions may be induced by environmental

variability or by errors in sampling, measurement, or application of management actions.

Alternatively, the sources of uncertainty may be difficult to identify and yet produce con-

spicuous patterns of variation in system responses (e.g., spatial correlations). A proper

accounting of these additional sources of uncertainty requires modeling; however, if models

are to be useful and relevant in decision-making, the models must include parameters that

can be updated as new information is acquired through monitoring. The Bayesian paradigm

provides a coherent framework for updating any of the parameters in a model of system dy-

namics, including ancillary parameters that do not represent the direct effects of management

actions on system responses. In addition, there are virtually no limits to the complexity of

models that can be entertained. Technological advancements in Bayesian computation cur-

rently permit sophisticated, hierarchical models of spatial and temporal dependence to be

fitted with relative ease (Wikle et al. 1998, Datta et al. 2000).

In some problems of natural resource management, scientific reasoning may indicate

that 2 or more structurally distinct models of system dynamics could be fitted to the data

and used in decision making. In other problems the process of model selection may be

somewhat arbitrary, and several models may fit the data equally well and provide plausible

descriptions of the observations. In either case, it would seem more appropriate to predict

the consequences of management actions by integrating over the posterior uncertainty of

all models under consideration rather than by conditioning on the predictions of a single

model. The Bayesian paradigm provides a straightforward method for averaging over model
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uncertainty (Draper 1995, Hoeting et al. 1999) that follows naturally from the calculus of

probabilities and requires no additional theory or principles. Thus, it is entirely feasible to

incorporate model uncertainty into the selection of alternative management actions.

In many problems of natural resource management, objectives are specified in terms of

the cumulative losses and benefits obtained from a future sequence of management actions.

The accumulated harvest of exploited fish or wildlife populations over some time frame is

a good example. In such problems the expected loss used to evaluate alternative sequences

of management actions generally depends on the joint distribution of predicted system re-

sponses (as in (10) for example); however, such loss functions pose no real difficulty for the

Bayesian decision-making framework. Complicated loss functions also may occur in prob-

lems where a sequence of decisions is required but the relative effects of different management

actions are poorly understood. In these problems managers initially may place greater value

on learning about the magnitude of these effects than on achieving a particular management

objective (e.g., a target level of vegetation cover). The rationale here is that learning may

yield long-term benefits which exceed the short-term rewards that may be attained with-

out an improved understanding of the effects of alternative management actions. Walters

and Hilborn (1978) refer to these as dual-control problems that require “active adaptive”

management. The competing objectives of dual-control problems must be specified in the

loss function, which quantifies the benefits of learning from a proposed set of management

actions. In a Bayesian treatment of the problem these benefits may be formulated in terms

of the average discrepancy between the posterior distribution of model parameters and up-

dates of the posterior that are predicted from the distribution of outcomes associated with

a proposed set of management actions. Therefore, in dual-control problems loss functions

will generally include model parameters (to quantify learning) and model predictions of

observable system features (to quantify specific management objectives).

In this paper we have argued that modern methods of Bayesian inference and decision

making are capable of solving complex problems of natural resource management. We antic-
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ipate widespread use of these methods in the near future, particularly as computing software

is developed for estimating posterior distributions of model parameters and predictions (e.g.,

see the software guide in Appendix C of Carlin and Louis 2000).
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Appendix: Stochastic Sampling Algorithms for Bayesian

Computation

We use a Markov chain Monte Carlo algorithm called Gibbs sampling (Gelfand and

Smith 1990, Gilks et al. 1996) to draw samples from joint posterior distributions of model

parameters. The Gibbs sampler is well suited to the model described in Section 2.2 because

conditional posterior distributions of its parameters are relatively easy to sample. For exam-

ple, when inferences are based on only 1 year of data (as in the examples of Sections 2.5.1

and 2.5.2), a sample from the joint posterior in (4) may be obtained by computing random

draws from the following full-conditional distributions (modulo their normalizing constants):

p(τ | β, ρ0,y1,X1) ∝ τn/2+ε1−1 exp
[
−τ

(
ε2 +

d1(1 − ρ2
0)

2

)]
(12)

p(βj | βk( �=j), τ, ρ0,y1,X1) ∝ exp
[
−τd1(1 − ρ2

0)
2

]
, (13)

where τ = 1/σ2 and d1 =
∑n

i=1(yi1 − xT
i1β)2. To derive these distributions, we assume a

Uniform(0,1) prior for each element of β, a Gamma(ε1, ε2) prior for τ , and a point-mass

prior for ρ (at ρ = ρ0), which is not identifiable when only 1 year of data is available. Since

the conditional density in (12) implies

τ | β, ρ0,y1,X1 ∼ Gamma
(

ε1 + n/2, ε2 +
d1(1 − ρ2

0)
2

)
,

Gibbs samples of τ are relatively easy to compute. The conditional density in (13) does not

have a familiar form, but the elements of β still may be sampled using an adaptive-rejection

algorithm (Gilks 1992, Gilks and Wild 1992).

When inferences are based on 2 years of data (as in the example of Section 2.5.3), a

sample from the joint posterior in (5) may be obtained by computing random draws from

the following full-conditional distributions (modulo their normalizing constants):

p(τ | β, ρ,y1,y2,X1,X2) ∝ τn+ε1−1 exp
[

− τ
(
ε2 +

d1(1 − ρ2)
2

+
d2

2

)]
, (14)
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p(βj | βk( �=j), | τ, ρ,y1,y2,X1,X2) ∝ exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]
, (15)

p(ρ | β, τ,y1,y2,X1,X2) ∝ (1 − ρ2)n/2 exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]
, (16)

where d2 =
∑n

i=1(yi2 − xT
i2β − ρ(yi1 − xT

i1β))2. To derive these distributions, we assume a

Uniform(0,1) prior for each element of β, a Gamma(ε1, ε2) prior for τ , and a Uniform(-1,1)

prior for ρ. As before, the conditional density in (14) has a familiar form

τ | β, ρ,y1,y2,X1,X2 ∼ Gamma
(

ε1 + n, ε2 +
d1(1 − ρ2)

2
+

d2

2

)

that allows relatively easy sampling of τ , and samples of β and ρ may be computed using

adaptive-rejection sampling.

Given a sample from the joint posterior distribution of model parameters, the method

of composition (Tanner 1996) may be used to compute a sample from the posterior predic-

tive distribution (7) associated with a particular set of management actions ; then, Monte

Carlo integration may be used to estimate the expected loss (8) associated with this set of

management actions. We demonstrate these calculations, which are rather trivial for the

autoregressive model, using the example data set of Section 2.5.3. Suppose Gibbs sampling

has been used to compute an arbitrarily large sample from the joint posterior distribution

(5), and let θ(r) = (β(r), σ2(r), ρ(r)) denote the rth element in this sample. We require a sam-

ple of the posterior predictive distribution of vegetation responses (ỹ3 | X̃3,y1,y2,X1,X2)

associated with the proposed management actions specified in X̃3. By applying the method

of composition to (7), the rth element ỹ(r)
3 is easily obtained by computing a random draw

from the following, n-variate normal distribution: N(X̃3β
(r) + ρ(r)(y2 − X2β

(r)), σ2(r)I),

where I is the n×n identity matrix. The absolute-error loss function used in the example of

Section 2.5.3 is l(ỹ3, 0.5) =
∑n

i=1 |ỹi3 − 0.5|. To estimate the expected loss associated with

the proposed management actions X̃3, we use Monte Carlo integration to average over the

posterior uncertainty expressed in the predictions of ỹ3:

l(X̃3 | y1,y2,X1,X2)
.=

1
R

R∑
r=1

l(ỹ(r)
3 , 0.5)
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where R denotes the number of draws computed from the posterior predictive distribution

of ỹ3.
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Figure 1: Histogram of the posterior distributions of β1, β2, and ρ estimated from the 2 years
of vegetation responses given in Section 2.5.3.
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